Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.

نویسندگان

  • Simon Chatelin
  • Jean-Luc Gennisson
  • Miguel Bernal
  • Mickael Tanter
  • Mathieu Pernot
چکیده

The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field's II software and shear wave propagation described by using the Green's formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Love Waves in Fluid Saturated Porous Viscoelastic Medium resting over an Exponentially Graded Inhomogeneous Half-space Influenced by Gravity

The present article is devoted to a theoretical study on Love wave vibration in a pre-stressed fluid-saturated anisotropic porous viscoelastic medium embedded over an inhomogeneous isotropic half-space influenced by gravity. The expression of dispersion has been achieved with the help of mathematical tools such as variable separable method and Whittaker’s function’s expansion under certain boun...

متن کامل

A Static Flexure of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

A Trigonometric Shear Deformation Theory (TSDT) for the analysis of isotropic plate, taking into account transverse shear deformation effect as well as transverse normal strain effect, is presented. The theory presented herein is built upon the classical plate theory. In this displacement-based, trigonometric shear deformation theory, the in-plane displacement field uses sinusoidal function in ...

متن کامل

Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory

A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure   analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero ...

متن کامل

Rayleigh Waves in a Homogeneous Magneto-Thermo Voigt-Type Viscoelastic Half-Space under Initial Surface Stresses

This paper deals with the propagation of magneto-thermo Rayleigh waves in a homogeneous viscoelastic half-space under initial stress. It has been observed that velocity of Rayleigh waves depends on viscosity, magnetic field, temperature and initial stress of the half-space. The frequency equation for Rayleigh waves under the effect of magnetic field, stress and temperature for both viscoelastic...

متن کامل

Free Vibration of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory

In this paper a variationally consistent trigonometric shear deformation theory is presented for the free vibration of thick isotropic square and rectangular plate. In this displacement based theory, the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 9  شماره 

صفحات  -

تاریخ انتشار 2015